一個圓被半徑分割成n等份用k種顏色來塗,每一區域塗一色,相鄰異色,顏色可以重複,不一定k種顏色全用,求證塗法為(k-1)(-1)^n+(k-1)^n

4587.PNG

由第 1 區開始圖顏色,有 k 種顏色可以用,

第 2 區必須跟第 1 區異色,所以有 k-1 種顏色可以用,

第 3 區必須跟第 2 區異色,所以有 k-1 種顏色可以用,



第 n-1 區必須跟第 n-2 區異色,所以有 k-1 種顏色可以用,

第 n 區必須跟第 n-1 區異色,所以有 k-1 種顏色可以用。

所以以上共有 k(k-1)^{n-1} 種塗色法。

可是這個數據並不是 a_n ,因為第 n 區可能跟第 1 區同色或是異色,

所以這個數據包含有 n 個區域相鄰塗異色,以及 n-1 個區域相鄰塗異色(第 n 區與第 1 區同色)的情況,

所以這個數據是 a_n + a_{n-1},故 a_n + a_{n-1} = k(k-1)^{n-1}  for all n>=3,

再加上遞迴關係式的初始條件 a_2 = k(k-1) 與 a_3=k(k-1)(k-2) ,可以求出 a_n (以 n 及 k 表示)。

引用自:http://math.pro/db/thread-499-1-1.html

 


arrow
arrow
    創作者介紹
    創作者 TeachingCenter. 的頭像
    TeachingCenter.

    ~Teachingcenter的醫學筆記~

    TeachingCenter. 發表在 痞客邦 留言(0) 人氣()