一凸多邊形,各內角由小到大成等差數列,且最大角比最小角多60度,又其內角和為最小角的8倍,則此多邊形邊數為?
設n邊形,最小角x,最大角x+60,詳見附圖(內角和公式:n邊形有n個頂點,取一個固定頂點,它除了相鄰的2個頂點之外,還有n-3個頂點。此點和這n-3個頂點可連成n-3條對角線,將n多邊形分割成n-2個三角形。因為一個三角形的內角和是180度,所以n邊形的內角和是(n-2)180度。)
一凸多邊形,各內角由小到大成等差數列,且最大角比最小角多60度,又其內角和為最小角的8倍,則此多邊形邊數為?
設n邊形,最小角x,最大角x+60,詳見附圖(內角和公式:n邊形有n個頂點,取一個固定頂點,它除了相鄰的2個頂點之外,還有n-3個頂點。此點和這n-3個頂點可連成n-3條對角線,將n多邊形分割成n-2個三角形。因為一個三角形的內角和是180度,所以n邊形的內角和是(n-2)180度。)
如圖所示,一力常數為k的理想輕質彈簧懸掛於天花板下,底部連接一質量m的小木塊,小木塊至於光滑水平桌面上,當地重力加速度g。當θ=37度時,可保持力平衡狀態,此時彈黃長度L。今將小木塊向右拉至θ=53度後,釋放小木塊。求:
(1)若小木塊釋放後,不會脫離地面,m、g、k、L要滿足什麼條件?
(2)小木塊釋放瞬間,加速度?與地面間正向力?
(3)彈簧荒復原長時,小木塊速度?加速度?與地面間正向力?
有個同學問了個和DNA、RNA有關的問題,弄得兵荒馬亂的...
問:DNA 最左邊有一個 5' ,最左邊有一個 3' ,轉成mRNA時會變 3' , 5',轉成tRNA時會變 5' , 3',這是什麼?
他有問,我沒有很懂...
如上圖所示,板質輕不計,彈簧的彈性係數k,原長L,重力加速度g,板上放一木塊,上方有一小球,小球質量m,木塊質量M。今達平衡後,小球緩緩滑落木塊邊緣,掉至地面,木塊在板上做鉛直簡諧運動,未脫離輕板。小球質量m的最大值為何?
坐標平面上有一△ABC,已知直線AB和a向量=(1,1)平行,直線AC和b向量(7,1)垂直,BC的斜率為-1/7,若△ABC的周長為48√2,則AC=?
令B(0,0),A(a,a),C(7r,-r),AC和向量(7,1)垂直,所以AC向量‧(7,1)=(a-7r,a+r)(7,1)=0,得到a=6r,所以A(6r,6r)、B(0,0)、C(7r,-r)的周長=48√2,解得r=3,AC長=r*5√2=15√2
滲出液(Transudate):是微血管內皮完整,但因靜水壓高(比如心衰竭)或滲透壓低(比如肝硬化導致白蛋白低下)造成的,這種情況是全身性的(systemic),也許左右肋膜腔積水程度不一,但是不可能一邊積到滿出來,還壓迫中膈腔(有點像tension hydrothorax),而另一邊卻沒積到半滴水的!
漏出液(Exudate):是有些發炎反應,造成微血管受損,血管內的蛋白質等大分子「漏出去」,所以胸水內的總蛋白量和血清比起來,大於50%。這種情況常是單邊的、局部的!
小技巧:
一細繩跨過一個定滑輪,繩的一端繫一串香蕉,猴子抓住另一側的繩子。假設猴子與香蕉的質量相等,且兩者所在的垂直高度相等,若繩子夠長且不計質量,並忽略所有的摩擦力。試問猴子運動時,會發生什麼樣的運動?
Ans:猴子無論如何運動,香蕉始終和猴子維持相同的高度。
類題:
多選第五題,答案(A)(B)
下表為日期 A-J 這段期間,恆春每天的日出日沒﹨月出月沒時刻,表示方式為「時:分」,採用 24 小時制。下列相關敘述,何者正確?